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J. Phys. A: Math. Gen. 15 (1982) L437-LS42. Printed in Great Britain 

LETI'ER TO THE EDITOR 

On the applicability of the Hill determinant and the 
analytic continued fraction method to anharmonic 
oscillators 

George P Flessast and G S AnagnostatosS 
t Department of Natural Philosophy, The University, Glasgow G12 8QQ, UK 
$ Tandem Acceleration Laboratory, NRC Demokritos, Aghia Paraskevi Attiki, Athens, 
Greece 

Received 11 June 1982 

Abstract. We finish a line of argument started in an earlier paper and show that the 
application of the Hill determinant and the associated analytic continued fraction method 
for the calculation of eigenvalues of anharmonic oscillators is of dubious validity and may 
thus lead to erroneous results. In this context some theorems concerning the eigenvalues 
of the Ax4 and the doubly anharmonic oscillators are proved. 

The Hill determinant method has been used (Biswas et a1 1971, 1973) for the 
calculation of the ground-state eigenvalues of the Axzm anharmonic oscillator. Along 
these lines and by application of the analytic continued fraction method, which is 
mathematically equivalent to the Hill determinant approach, Singh et a1 (1978) treated 
the doubly anharmonic oscillator ax2 + bx4 + c x 6 .  Recently Datta and Mukherjee 
(1980) have applied exactly the same procedure to the interaction V ( r ) =  
-alr +br +cr2. 

In a previous paper (Flessas 1982) we discussed the aforementioned method and 
verified its inadequacy for the calculation of the energy spectrum of the Datta and 
Mukherjee (1980) potential. In this Letter we show the Hill determinant technique 
to be wanting also in the case of the oscillator with either quartic or quartic and sextic 
anharmonicity. These findings prove, therefore, that the above technique should not 
be used without a proper incorporation into it of the main physical requirement that 
the wavefunction of the relevant Schrodinger equation is normalisable. 

We begin by considering the oscillator with quartic anharmonicity. Regarding this 
model we have the Schrodinger equation 

Y"(x) + (E -x2-Ax4)y(x) = 0 A >O. (1) 

y(x)=exp(-ix2)f(x) (2) 

Biswas et a1 (1971) make the ansatz 

and obtain for f(x) the differential equation 

f ' ( x ) - 2 ~ f ' ( ~ ) + ( E - l  -Ax4)f(x)=0. (3 1 
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They set 
m 

f ( x ) =  c,xZn 
n =O 

and get from equation (3) the difference equation 

14) 

At this point these authors claim that we have to ensure that non-trivial C, exist. 
Thus, they conclude, we must require that the infinite determinant of the coefficients 
of the homogeneous simultaneous equations (4a) vanish, i.e., with 

Dn 

E-1 2 0 0 . 
0 E-5 12 0 . 

-A 0 E - 9  30 0 0 
0 -A 0 E-13  56 

E-4(n-2)-1 2(n-1)(2n-3) 
-A 0 E -4(n - 1)- 1 

they get 

lim D, = 0. ( 5 6 )  
n +co 

Equation (Sb) ,  according to Biswas et a1 (1971), considered as an equation in E, 
is the eigenvalue condition for equation (1). This is, however, a false statement and 
completely confusing with respect to the correct eigenvalues, as we will show below. 

The c, exist for all finite E and A, and they can be calculated recursively from 
equation (4a) (cf any textbook on differential equations). No additional constraint 
needs to be imposed. What Biswas et a1 actually do is simply to apply the Hill 
determinant method used in the context of the Mathieu differential equation. As 
described in detail by Morse and Feshbach (1953) in the case of the Mathieu equation 
the solution is practically written in the form of equation (4), while the corresponding 
coefficients, denoted here by c LM), satisfy a recursion relation analogous to equation 
(4a). Owing to the fact that 0 and co are irregular singular points of the Mathieu 
equation, we can establish the convergence of the series solution for 0 < x  < co only 
by ensuring that the c kM’, when calculated recursively from the three-term difference 
equation they fulfil, no longer increase. In other words we require that cl‘’ + 0 as 
n + f m  and thus we get from the c‘,“’ recursion formula, since cLMM’ can be written 
in the form of a determinant, the equivalent relation to equation ( 5 b ) ,  i.e. the Hill 
determinant which we equate with zero. Put another way, we first truncate the infinite 
system of equations for the ckM), say with n = *tN and assume crM) ==O for liI > N .  
Then we have a finite system of homogeneous simultaneous equations for the cLM’ 
and so the determinant of the coefficients must be zero. Finally we let N+co and 
arrive, of course, at the same Hill determinant. In this way the characteristic quantity 
of the Mathieu equation, denoted by s, can be calculated. In the case of equation 
(3), however, the series (4) converges for --fo < x < -fo according to the general theory 
on differential equations and so we deduce ( c , ~ ’ ~ )  ---+ 0 for .t E (--a, a? whence 

I ,  -a- 
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cn -+ 0 as n -+ CO for every finite E, A. Now it can be easily checked that 

Dn n 3 2 .  (--Un 
2 x l 2 x 3 0 x  ... x[2n(2n-1)] c, = 

A glance at equations (5b) and (6) reveals that Biswas et al constrain E such that 
limn+m cn = 0. But this is absolutely superfluous here since as indicated prior to 
equation (6),  we have cn -+ 0 as n + CO for arbitrary E, A. The correct eigenvalues can 
be calculated only from the requirement that the series in equation (4) for Ix I -+ CO 

does not compensate exp ( - $x2) in equation (2) so that y (x) remains normalisable. 
Condition ( 5 b )  alone is incapable of ensuring that f(x) for Ix I -+ CO is sufficiently well 
behaved that y (x) + 0 as 1x1 -+ CO, since it is taken from an entirely different context, 
i.e. that of the Mathieu equation. 

Using equation (4a) it can be verified (cf also equation (9) of Biswas et ai (1971)) 
that 

Equation (7), which demonstrates the convergence of I; cnx2" for x E (-CO, CO) known 
already, implies that f(x) in equation (4) behaves for large lx I like 

2 F( t )  = f [(A/4)1'3]nt"(n !)-'I3 t = x .  
n = O  

Evidently the series in equation (8) converges for t E [0, CO). Now it is readily seen that 
m 

n=O 
F ( t )  > 1 [(A/4)1/3]"t"(n!)-1 = e~p[(A/4)"~x~]. (9) 

Equation (9) exhibits the important result that f(x) behaves stronger than 
exp[(A/4) x ] for / X I - +  CO. This, in conjunction with equation (2), establishes the fact 
that for A > O S  the solution (2) for equation (1) definitely becomes unphysical for 
any finite E. In view of this result the bounds given for y (x) by Biswas et al are wrong 
(equation (10) of that paper). 

Moreover, in the numerical application of equation ( 5 6 )  Biswas et al truncate the 
infinite determinant and consider the (n + 1) x ( n  + 1) approximant, Dn+l, to D, i.e. 
Dntl = 0. This implies (cf equation (6)) that we require cnCl = 0 and assume ci = 0 for 
i 3 n + 2. Such an assumption entails the approximation of the physically acceptable 
solution to equation (1) by exp(-$x2) X polynomial. This is plausible because 
exp(-$x2) x polynomial is an exact solution of the harmonic oscillator equation A = 0 
in equation (1). However, the physical wavefunction of equation (1) cannot in this 
way be approximated to any degree of accuracy since the limit n -+ CO will yield an 
unphysical solution as noted after equation (9), although some finite E values may 
be obtained from equation (5b ) .  

To summarise, the method of Biswas et al(1971) has nothing to do with the actual 
Hill determinant procedure and all it does is to verify the possibility of approximating 
the correct wavefunction of equation (1) by exp(-$x*) x polynomial, the polynomial 
being derived from a series which renders, at any rate for A > 0.5, the y(x) in equation 
(2) unphysical. Some eigenvalues may, of course, be solutions of equation (5b ) ,  but 
in general the set of eigenvalues of equation (1) need not coincide with the set of E 
solutions of equation (5b) .  The same comments can be made regarding the case of 
the (x2+Ax2") oscillator (Biswas et a1 1973). 

1/3 2 
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We now turn our attention to the doubly anharmonic oscillator as investigated by 

i 10) 

Singh et a1 (1978). The corresponding Schrodinger equation is 

- (h2/2m ) y ” ( x )  + (axz + bx4 + cx 6 ) y  ( x )  = ~y (XI a, c > 0. 

The ansatz (Singh et ai 1978) 

yields 

~ ( x )  + 2(-ax3 + p x ) f ’ ( x )  + [ ( p z  - 3a - 2ma/h2)x2 + 2 m ~ / h ~  + p I f ( x )  = 0. (12) 

Singh et a1 solve equation (12) by setting 
m 

f ( x )  = x u  c anxZn 
n =o 

where U = 0 , l  for the even and odd parity states, respectively, and 

(2n + 2 + u ) ( 2 n  + 1 + U ) U , , l + [ &  + p ( 4 n  + 1 + 2 v ) ] a ,  + a [ y  -(4n - 1 +2u)]an-* = 0 
(14) 

E = 2mE/Zt2 y = [2m/(h2c)]1’2(-a +b2/4c). ( 1 4 ~ )  

From equation (14) one can easily obtain 

(15) - C n  -- - an 
an-1 

A n C n i l  
Bn- 

A n  + 1 C n  +2 
Bn+l- Bn+2- ’ . . 

where 

An = (2n + 1 +2u)(2n + 2 + U )  B n = p ( 4 n + 1 + 2 u ) + ~  

Cn = -a(4n + 2 ~  - y  - 1) (15a) 
and since 

one gets from equation (15) 

a (U + l ) ( ~  + 2)(3 + 221 - y )  
-[E+p(2u+1)]= 

CY (7 + 2~ - Y ) ( u  + 3 ) ( ~  + 4) 
E +/3(2u + 5 ) +  

E + p ( 2 u  +9)+  .. 

Singh et a1 (1978) claim that equation (16), considered as an equation in E, gives the 
energy eigenvalues of equation (10). This is, however, an unsubstantiated conclusion 
and the relation of condition (16) to the correct eigenvalues is not at all clear. 

(i) Singh et a1 in writing down equation (16) actually utilise the second alternative 
available, the first being the Hill determinant, for ensuring the convergence for 
0 < x  < 00 of the series solving the Mathieu differential equation. In such a way the 
characteristic quantity, s, of the Mathieu equation can be determined. Indeed, as set 
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out by Morse and Feshbach (1953), the equivalent relation to equation (16), derived 
from the recursion relation analogous to equation (14), is sufficient for the convergence 
of the series in question. In the case of equation (12), however, condition (16) is 
completely meaningless, since the series in equation (13) is convergent for x E (-00,oo). 

Equation (16) in no case ensures that y ( x )  in equation (11) remains normalisable 
(and we cannot expect it to do so since its origin lies in the Mathieu equation). 

(ii) From equation (14) we observe that for large n 

an+l/an = * ( a / n ) 1 / 2  (17) 

The positive sign in equation (17) is realised if, for example, as an inspection of 
equation (14) reveals, 

b>O O < E  <$b(2m/h2c)1/2(2u + 1) y < 2 u + 3  (18) 

as then the choice a. > 0 necessarily implies a, > 0. Consequently the series in equation 
(13) for Ix I + oo behaves like the series 

which is convergent for t 2 0. We proceed to compare F( t )  with 

2 exp(st 1 2  a)= - (a/4Int2n t = x  
n=o n !  

by comparing the coefficients of equal even powers in F( t )  and exp (at2a). It is 
straightforward to prove that from a sufficiently large but finite n, say N, we get 

Now 

1 2  ZN-2 (a/4)N-1 (1 + 0(~-1)) + O0 ((~/4)"~2n exp (st C Y )  = t 
(N  - l)! n a ~  n !  

Equations (21)-(23) show that F( t ) ,  and thus also f(x), compensates exp (-&'CY) for 
IxI+oo. Hence, according to equation (18), if b > O  and y<2u +3,  any E satisfying 
the inequality 0 < E  <&[Eh2/(2mc)]1'2(2u + 1) cannot be an eigenvalue for equation 
(10). This physically important result is completely missed in the relevant theorem I 
of Singh et al. In view of the comments in (i) this is not at all surprising. Further, 
the above result casts serious doubt on the assertion that equation (16) yields all the 
eigenvalues of equation (10). 

In summary, we have verified that the methods used in the context of the Mathieu 
(or more generally the Hill) differential equation are not, nor should they be, directly 
applicable to the equations obtained in relation to various anharmonic oscillators. In 
these procedures the requirement that the wavefunction remain normalisable has to 
be incorporated so as to ensure that the values we obtain for E are the physically 
correct ones. No general method for doing this seems to exist (Znojil 1982a and 
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private communication) and thus one is forced to carry out rather extensive investiga- 
tions for every potential under consideration. To our knowledge the only known 
exact solutions for anharmonic oscillators can be written as either (exponentials) x 
(polynomials) (Flessas 1979, Flessas and Das 1980, Znojil 1982b) or as definite 
integrals (Flessas 1981a, b). In both cases the actual notion of the Hill determinant 
or the analytic continued fraction method is irrelevant since we obtain the above 
solutions either by rigorously truncating infinite series, whose behaviour for Ix 1 + 00 

may generate an unphysical wavefunction, or by representing the wavefunction y (x) 
as an integral with y (x) + 0 for Ix 1 + 00. 

Note added in proof. As observed in our previous work (Flessas 1982) and elsewhere, equation (15) simply 
gives the terminating solutions, i.e. C, = 0 and a, = 0 for n 3 N, to equation (10). But these solutions are 
obtainable directly from equation (14) and one does not actually need to write down equation (1.51. 
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